Search results for "K-means clustering"

showing 10 items of 18 documents

Radio frequency fingerprinting for outdoor user equipment localization

2017

The recent advancements in cellular mobile technology and smart phone usage have opened opportunities for researchers and commercial companies to develop ubiquitous low cost localization systems. Radio frequency (RF) fingerprinting is a popular positioning technique which uses radio signal strength (RSS) values from already existing infrastructures to provide satisfactory user positioning accuracy in indoor and densely built outdoor urban areas where Global Navigation Satellite System (GNSS) signal is poor and hard to reach. However a major requirement for the RF fingerprinting to maintain good localization accuracy is the collection and updating of large training database. The Minimization…

langattomat lähiverkotKullback-Leibler divergenceK-Nearest NeighborpaikannusK-means clusteringRF fingerprintingmatkaviestinverkotradioaallotLTEWLANkoneoppiminenmobiililaitteetFuzzy C-means ClusteringklusterianalyysiMahalanobis distancehierarchical clustering
researchProduct

Fast PET Scan Tumor Segmentation Using Superpixels, Principal Component Analysis and K-Means Clustering

2018

Positron Emission Tomography scan images are extensively used in radiotherapy planning, clinical diagnosis, assessment of growth and treatment of a tumor. These all rely on fidelity and speed of detection and delineation algorithm. Despite intensive research, segmentation remained a challenging problem due to the diverse image content, resolution, shape, and noise. This paper presents a fast positron emission tomography tumor segmentation method in which superpixels are extracted first from the input image. Principal component analysis is then applied on the superpixels and also on their average. Distance vector of each superpixel from the average is computed in principal components coordin…

FOS: Computer and information sciencespositron emission tomographyprincipal component analysisComputer scienceComputer Vision and Pattern Recognition (cs.CV)k-meansCoordinate systemComputer Science - Computer Vision and Pattern RecognitionFOS: Physical sciences02 engineering and technologyBenchmarkQuantitative Biology - Quantitative MethodsBiochemistry Genetics and Molecular Biology (miscellaneous)030218 nuclear medicine & medical imagingsuperpixels03 medical and health sciences0302 clinical medicineStructural Biology0202 electrical engineering electronic engineering information engineeringmedicineSegmentationComputer visionTissues and Organs (q-bio.TO)Cluster analysisQuantitative Methods (q-bio.QM)Pixelmedicine.diagnostic_testbusiness.industrysegmentationk-means clusteringQuantitative Biology - Tissues and OrgansPattern recognitionPhysics - Medical PhysicsPositron emission tomographyFOS: Biological sciencesPhysics - Data Analysis Statistics and ProbabilityPrincipal component analysis020201 artificial intelligence & image processingMedical Physics (physics.med-ph)Artificial intelligenceNoise (video)businessData Analysis Statistics and Probability (physics.data-an)BiotechnologyMethods and Protocols
researchProduct

Automatic detection of cervical cells in Pap-smear images using polar transform and k-means segmentation

2016

We introduce a novel method of cell detection and segmentation based on a polar transformation. The method assumes that the seed point of each candidate is placed inside the nucleus. The polar representation, built around the seed, is segmented using k-means clustering into one candidate-nucleus cluster, one candidate-cytoplasm cluster and up to three miscellaneous clusters, representing background or surrounding objects that are not part of the candidate cell. For assessing the natural number of clusters, the silhouette method is used. In the segmented polar representation, a number of parameters can be conveniently observed and evaluated as fuzzy memberships to the non-cell class, out of …

business.industryk-means clustering02 engineering and technologyImage segmentationElectronic mail030218 nuclear medicine & medical imagingSilhouette03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringCluster (physics)Polar020201 artificial intelligence & image processingSegmentationComputer visionArtificial intelligencebusinessCluster analysisMathematics2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)
researchProduct

K-means Clustering to Study How Student Reasoning Lines Can Be Modified by a Learning Activity Based on Feynman’s Unifying Approach

2017

Background:Research in Science Education has shown that often students need to learn how to identify differences and similarities between descriptive and explicative models. The development and use of explicative skills in the field of thermal science has always been a difficult objective to reach. A way to develop analogical reasoning is to use in Science Education unifying conceptual frameworks.Material and methods:A questionnaire containing six open-ended questions on thermally activated phenomena was administered to the students before instruction. A second one, similar but focused on different physical content was administered after instruction. Responses were analysed using k-means Cl…

Analogical reasoningScience instructionMechanism (biology)Computer scienceLogical reasoningBoltzmann Factor evaluation quantitative data analysis in education k-means clustering thermally-activated phenomenaSettore FIS/08 - Didattica E Storia Della FisicaApplied Mathematics05 social sciencesk-means clustering050301 educationScience educationField (computer science)Educationsymbols.namesake0502 economics and businesssymbolsMathematics educationFeynman diagram0503 education050203 business & managementEURASIA Journal of Mathematics, Science and Technology Education
researchProduct

Cluster-based RF fingerprint positioning using LTE and WLAN signal strengths

2017

Wireless Local Area Network (WLAN) positioning has become a popular localization system due to its low-cost installation and widespread availability of WLAN access points. Traditional grid-based radio frequency (RF) fingerprinting (GRFF) suffers from two drawbacks. First it requires costly and non-efficient data collection and updating procedure; secondly the method goes through time-consuming data pre-processing before it outputs user position. This paper proposes Cluster-based RF Fingerprinting (CRFF) to overcome these limitations by using modified Minimization of Drive Tests data which can be autonomously collected by cellular operators from their subscribers. The effect of environmental…

Computer Networks and CommunicationsComputer scienceReal-time computingK-means clustering02 engineering and technologySignallaw.inventionK-nearest neighbors0203 mechanical engineeringlaw0202 electrical engineering electronic engineering information engineeringfuzzy C-means clusteringWi-FiElectrical and Electronic EngineeringData collectionbusiness.industryFingerprint (computing)k-means clusteringRF fingerprint positioning020206 networking & telecommunications020302 automobile design & engineeringGridHardware and ArchitectureEmbedded systemMinificationRadio frequencybusinesshierarchical clustering
researchProduct

Pattern Classification from Multi-beam Acoustic Data Acquired in Kongsfjorden

2021

Climate change is causing a structural change in Arctic ecosystems, decreasing the effectiveness that the polar regions have in cooling water masses, with inevitable repercussions on the climate and with an impact on marine biodiversity. The Svalbard islands under study are an area greatly influenced by Atlantic waters. This area is undergoing changes that are modifying the composition and distribution of the species present. The aim of this work is to provide a method for the classification of acoustic patterns acquired in the Kongsfjorden, Svalbard, Arctic Circle using multibeam technology. Therefore the general objective is the implementation of a methodology useful for identifying the a…

geographygeography.geographical_feature_categorybusiness.industryMultibeamk-meansk-means clusteringClimate changeGlacierShoaling and schoolingSettore MAT/01 - Logica MatematicaData setWater columnEcho-surveyPolarPhysical geographyArtificial intelligenceCluster analysisbusinessGeology
researchProduct

Automatic Unsupervised Segmentation of Retinal Vessels Using Self-Organizing Maps and K-Means Clustering

2011

In this paper an automatic unsupervised method for the segmentation of retinal vessels is proposed. A Self-Organizing Map is trained on a portion of the same image that is tested and K-means clustering algorithm is used to divide the map units in 2 classes. The entire image is again input for the Self-Organizing Map, and the class of each pixel will be the class of the best matching unit on the Self-Organizing Map. Finally, the vessel network is post-processed using a hill climbing strategy on the connected components of the segmented image. The experimental evaluation on the publicly available DRIVE database shows accurate extraction of vessels network and a good agreement between our segm…

Self-organizing mapGround truthSettore INF/01 - InformaticaPixelbusiness.industryComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONk-means clusteringScale-space segmentationPattern recognitionRetinal vessels Self-Organizing Map K-MeansSegmentationComputer visionArtificial intelligenceCluster analysisbusinessHill climbing
researchProduct

The Hydrothermal System of Solfatara Crater (Campi Flegrei, Italy) Inferred From Machine Learning Algorithms

2019

Two machine learning algorithms were applied to three multivariate datasets acquired at Solfatara volcano. Our aim was to find an unbiased and coherent synthesis among the large amount of data acquired within the crater and along two orthogonal vertical NNE- and WNW-trending cross-sections. The first algorithm includes a new approach for a soft K-means clustering based on the use of the silhouette index to control the color palette of the clusters. The second algorithm which uses the self-organizing maps incorporates an alternative method for choosing the number of nodes of the neural network which aims to avoid the need for downstream clustering of the results of the classification. Both m…

Self-organizing mapMultivariate statistics010504 meteorology & atmospheric sciencesself-organizing maps010502 geochemistry & geophysicsMachine learningcomputer.software_genre01 natural sciencesSilhouetteImpact craterSolfataralcsh:ScienceCluster analysisK-means0105 earth and related environmental sciencesExploration geophysicsArtificial neural networkbusiness.industryk-means clusteringseismic methodsmachine learningGeneral Earth and Planetary Scienceslcsh:QArtificial intelligenceCampi FlegreibusinesscomputerAlgorithmGeologyFrontiers in Earth Science
researchProduct

Combined Elephant Herding Optimization Algorithm with K-means for Data Clustering

2018

Clustering is an important task in machine learning and data mining. Due to various applications that use clustering, numerous clustering methods were proposed. One well-known, simple, and widely used clustering algorithm is k-means. The main problem of this algorithm is its tendency of getting trapped into local minimum because it does not have any kind of global search. Clustering is a hard optimization problem, and swarm intelligence stochastic optimization algorithms are proved to be successful for such tasks. In this paper, we propose recent swarm intelligence elephant herding optimization algorithm for data clustering. Local search of the elephant herding optimization algorithm was im…

Optimization problemComputer sciencebusiness.industryk-means clustering020206 networking & telecommunications02 engineering and technologycomputer.software_genreSwarm intelligence0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingStochastic optimizationLocal search (optimization)Data miningHerdingbusinessCluster analysiscomputerMetaheuristic
researchProduct

A Clustering approach for profiling LoRaWAN IoT devices

2019

Internet of Things (IoT) devices are starting to play a predominant role in our everyday life. Application systems like Amazon Echo and Google Home allow IoT devices to answer human requests, or trigger some alarms and perform suitable actions. In this scenario, any data information, related device and human interaction are stored in databases and can be used for future analysis and improve the system functionality. Also, IoT information related to the network level (wireless or wired) may be stored in databases and can be processed to improve the technology operation and to detect network anomalies. Acquired data can be also used for profiling operation, in order to group devices according…

050101 languages & linguisticsIoTComputer scienceIoT; LoRa; LoRaWAN; machine learning; k-means; anomaly detection; cluster analysisk-means02 engineering and technologyLoRaSilhouette0202 electrical engineering electronic engineering information engineeringProfiling (information science)Wireless0501 psychology and cognitive sciencesCluster analysisbusiness.industryNetwork packetSettore ING-INF/03 - Telecomunicazioni05 social sciencesk-means clusteringanomaly detectionLoRaWANmachine learning020201 artificial intelligence & image processingAnomaly detectionInternet of ThingsbusinessComputer networkcluster analysis
researchProduct